
Philips Healthcare - C# Coding Standard

Version head

issued by the CCB Coding Standards Philips Healthcare

Table of Contents
Change History..1

Introduction..6
Introduction...6

Comments...8
Rule 4@101..8
Rule 4@105..8
Rule 4@106..8
Rule 4@111..9

General..11
Rule 2@105..11
Rule 2@107..11

Naming..12
Rule 3@109..12
Rule 3@204..12
Rule 3@501..12
Rule 3@504..13

Object lifecycle...14
Rule 5@101..14
Rule 5@102..14
Rule 5@106..14
Rule 5@107..15
Rule 5@108..15
Rule 5@111..16
Rule 5@113..16
Rule 5@114..22
Rule 5@116..22
Rule 5@117..22
Rule 5@118..23
Rule 5@119..23
Rule 5@121..23

Control flow..25
Rule 6@101..25
Rule 6@102..25
Rule 6@105..25
Rule 6@109..26
Rule 6@112..26
Rule 6@115..27
Rule 6@119..27
Rule 6@120..27
Rule 6@121..28
Rule 6@191..28
Rule 6@201..28

Object oriented...30
Rule 7@101..30
Rule 7@102..31

title

i

Table of Contents
Object oriented

Rule 7@105..31
Rule 7@106..32
Rule 7@107..32
Rule 7@108..32
Rule 7@201..33
Rule 7@301..33
Rule 7@303..33
Rule 7@403..34
Rule 7@404..35
Rule 7@501..36
Rule 7@502..36
Rule 7@503..37
Rule 7@520..37
Rule 7@521..37
Rule 7@530..38
Rule 7@531..38
Rule 7@532..38
Rule 7@533..38
Rule 7@601..39
Rule 7@602..39
Rule 7@603..39
Rule 7@604..40
Rule 7@608..40
Rule 7@609..41
Rule 7@611..41
Rule 7@700..42

Exceptions...43
Rule 8@102..43
Rule 8@104..44
Rule 8@105..44
Rule 8@107..45
Rule 8@108..45
Rule 8@109..45
Rule 8@110..46
Rule 8@111..46
Rule 8@203..47

Delegates and events..48
Rule 9@101..48
Rule 9@102..48
Rule 9@108..48
Rule 9@110..49
Rule 9@111..49
Rule 9@112..50
Rule 9@113..50
Rule 9@114..51

Data types...52
Rule 10@203..52
Rule 10@301..53

title

ii

Table of Contents
Data types

Rule 10@401..53
Rule 10@404..54
Rule 10@405..54
Rule 10@406..55
Rule 10@407..55

Coding style..56
Rule 11@407..56
Rule 11@409..57

Performance...58
Rule 12@101..58
Rule 12@102..58
Rule 12@103..59
Rule 12@104..59
Rule 12@105..59
Rule 12@106..60

Literature..61

title

iii

Change History
Revision Date Description

5.31 2022-06-16 11:52:24 (Anne Brouwers - TIOBE):
- RTC ticket 248572: Added rule 2@107

5.30 2022-05-31 15:51:21 (Anne Brouwers - TIOBE):
- RTC ticket 162722: Updated checked status for rule 12@103

5.29 2022-02-17 13:13:59 (Dennie Reniers - TIOBE):
- Ticket 29743: Updated documentation for rule 5@113

5.28 2021-11-01 06:17:09 (Dennie Reniers - TIOBE):
- Ticket 29070: Updated documentation for rule 5@113

5.27 2021-06-15 13:33:01 (Maikel Steneker - TIOBE):
- RTC ticket 228979: Removed exception for rule 5@108

5.26 2021-06-15 12:39:06 (Maikel Steneker - TIOBE):
- RTC ticket 214465: Rewrote description for rule 6@105

5.25 2021-03-26 14:14:59 (Maikel Steneker - TIOBE):
- RTC ticket 222136: Improved description for rule 9@113.

5.24 2020-11-02 17:34:56 (Maikel Steneker - TIOBE):
- RTC ticket 167066: Removed rules 5@112 and 5@122.
- RTC ticket 217586: Improved description for rule 5@119.

5.23 2020-09-04 21:39:30 (Paul Jansen -TIOBE):
- RTC ticket 194061: Adjusted severity level of rule 4@101.

5.22 2020-08-28 16:57:24 (Maikel Steneker - TIOBE):
- RTC ticket 8242: Added new rule 9@114.

5.21 2020-08-03 16:41:49 (Paul Jansen - TIOBE):
- RTC ticket 210846: Set rule 6@119 to "checked".

5.20 2020-06-05 23:55:51 (Paul Jansen - TIOBE):
- RTC ticket 207002: Improved links to the Aviva C# Coding
Guidelines.

5.19 2020-06-03 13:53:22 (Paul Jansen - TIOBE):
- RTC ticket 162719: Improved rule 8@104.

5.18 2020-05-05 15:37:02 (Paul Jansen - TIOBE):
- RTC ticket 135894: Removed rules 5@120 and 7@304.

5.17 2020-02-09 13:05:57 (Paul Jansen - TIOBE):
- RTC ticket 196631: Added exception to rule 6@112.

5.16 2019-12-01 13:25:52 (Paul Jansen - TIOBE)
- RTC ticket 142877: Improved synopsis of rule 5@108.

5.15 2019-08-13 19:46:04 (Paul Jansen - TIOBE)
- RTC ticket 162717: Changed rule 7@608.

5.14 2019-08-10 16:17:26 (Paul Jansen - TIOBE)
- RTC ticket 156693: Improved description of rule 6@201.

5.13 2019-08-10 15:49:30 (Paul Jansen - TIOBE)
- RTC ticket 142625: Improved rule 6@109.

5.12 2019-07-13 18:46:08 (Paul Jansen - TIOBE)
- RTC ticket 162720: Removed rule 10@403.

5.11 2019-07-13 18:22:29 (Paul Jansen - TIOBE)
- RTC ticket 57283: Improved description of rule 7@102.

5.10 2019-02-24 12:21:56 (Paul Jansen - TIOBE)
- RTC ticket 162721: Removed rule 10@501.

1

5.9 2019-02-02 18:26:55 (Paul Jansen - TIOBE)
- RTC ticket 142879: Improved synopsis of rule 5@113.

5.8 2018-12-01 17:31:39 (Paul Jansen - TIOBE)
- RTC ticket 142880: Removed rule 6@103.

5.7 2018-09-22 20:16:21 (Paul Jansen - TIOBE)
- RTC ticket 142615: Removed rule 3@105.

5.6 2018-08-20 00:09:24 (Paul Jansen - TIOBE)
- RTC ticket 142876: Improved the description of rule 4@101.

5.5 2018-08-18 15:33:51 (Paul Jansen - TIOBE)
- TiCS ticket 21092: removed non-ascii characters from coding
standard.

5.4 2018-07-21 15:49:45 (Paul Jansen - TIOBE)
- RTC ticket 142898: Improved the description of rule 6@119.

5.3 2017-01-18 10:40:27 (Bram Stappers - TIOBE)
- Ticket 9142: Added example for rule 7@502.

5.2 2016-11-03 11:53:22 (Bram Stappers - TIOBE)
- Added rule 5@122 (Avoid empty finalizers).
- Added related MSDN (Destructors) reference.
- Fixed rule synopses.

5.1 2014-08-10 20:09:39 (Paul Jansen - TIOBE)
- Removed rules 3@103, 6@106.
- Changed rules 3@109, 4@105.
- Fixed typos in rules 3@204, 4@106, 5@113, 8@104.
- Set rules 7@533, 7@603, 8@107, 9@108 to "checked".
- Set rule 5@117, 5@118, 6@119, 7@503, 8@111 to "unchecked".
- Changed the use of the term "destructor" into "finalizer" throughout
the standard.
- Corrected the change history of version '4.4'.

5.0
(Authorized)

2013-04-16 15:44:18 Official release.

4.4 2013-04-09 15:52:04 (Paul Jansen - TIOBE)
Processed review comments:
- Adjusted the following rules: 3@109, 4@106 and 5@111.

4.3 2013-03-25 00:07:10 (Paul Jansen - TIOBE)
Processed review comments:
- Removed rule 8@204.
- Added new rule 5@121.
- Adjusted the following rules: 3@109, 3@204, 4@101, 5@112,
5@113, 5@114, 6@109, 6@191, 7@108, 7@201, 7@301, 7@501,
7@503, 7@521, 7@530, 7@531, 7@532, 7@609, 7@700, 8@104,
8@107, 8@110, 9@101, 9@102 and 10@301.

4.2 2013-02-12 12:32:19 (Paul Jansen - TIOBE)
- Adapted the introduction to reflect the major changes made to the
standard in version 4.1.

4.1 2013-01-26 22:31:38 (Paul Jansen - TIOBE)
- RTC-2451: Improved rationale of rule 10@401.
- RTC-10094: Removed rules 3@102, 3@103, 3@104, 3@106,
3@107, 3@108, 3@110, 3@111, 3@113, 3@120, 3@122, 3@201,
3@202, 3@203, 3@301, 3@302, 3@303, 3@304, 3@305, 3@306,
3@307, 3@401, 3@402, 3@503, 3@510, 3@511, 4@103, 6@118,
7@402, 7@504, 7@522, 7@525, 7@526, 8@101, 8@106, 8@202,

title 12/08/22

2

9@103, 9@104, 9@105, 9@106, 9@107, 10@201, 10@202,
11@101, 11@403, 11@408, 11@411, 11@412, 11@413, resurrected
rules 7@503, 8@204.
- RTC-10096: Added rules 4@111, 5@119, 5@120, 6@120, 6@121,
7@106, 7@107, 7@108, 7@304, 7@404, 7@611, 8@111, 9@113,
10@501, adapted rule 5@117.
- RTC-11829: Changed severity level of rule 7@609 from level 2 to
level 7.

4.0
(Authorized)

2012-06-12 12:25:06 Processed review comments on 5@113, 6@118, 6@119, 6@191 &
6@201

3.3 2012-03-20 00:02:32 WI-0934 Adapted coding rules 7@520, 7@525 & 7@526
WI-0936 Added new coding rule 12@106
WI-0945 Added new coding rule 12@105
WI-0969 Added new coding rule 11@412
WI-0994 Added new coding rule 9@111
WI-0995 Added new coding rule 9@112
WI-1007 Added new coding rule 5@118
WI-1008 Added new coding rule 3@511
WI-1017 Added new coding rule 6@119
WI-1018 Added new coding rule 5@117
WI-1036 Set level of coding rule 7@525 from 3 to 8
WI-1082 Made coding rule 8@204 ¿obsolete¿
WI-1083 Marked coding rule 6@118 as NOT checked
WI-1087 Added new coding rule 11@408
WI-1088 Added new coding rule 11@413
WI-1097/WI-1096 Adapted coding rule 11@407
WI-1098 Coding rules 5@111/112&113 should now be in line
WI-1099 Adapted coding rule 3@102
WI-1107 Updated coding rule 5@113
WI-1108 Updated coding rule 5@113
WI-1110 Added new coding rule 7@533
WI-1137 Added angle numbers as ¿allowed¿ magic numbers to coding
rule 10@301
WI-1175 Added new coding rule 6@191
WI-1176 Added new coding rule 6@201
WI-1641 Adapted coding rule 10@104

3.2 2010-10-07 16:36:14 Added 12@103 performance requirement.

3.1 2010-09-28 16:57:43 IM-TA00007457: Added rule 7@700 (Do not ignore method results)
IM-TA00004389: Added rule 3@510 (Use descriptive names for
generic type parameters)
Added new Performance section
IM-TA00007213: Added new rule 12@102.
IM-TA00007214: Added new rule 12@101.
Also added new performance rule 12@104.

3.0
(Authorized)

2010-03-23 15:55:17 IM-TA00006705 Add reference to 9@103 to rule 3@307
IM-TA00006709 Add INotifyPropertyChanged text to rule 9@106
IM-TA00002697 Relax rule 7@101 (class which contains only fields)
IM-TA00006685 C# Coding Standards rule 8@110 should change
IM-TA00006707 Make new on rule on casting
IM-TA00006706 Rephrase synopsis of 7@102
IM-TA00006831 Remove 3@112 from the C# coding standard

2.5 2009-07-14 14:49:52 IM-TA00006289: Extended rule 7@521 to include the other way
around also for value types.

title 12/08/22

3

2.4 2009-06-02 10:46:51 Updated levels

2.3 2009-05-12 16:54:40 IM-TA0006022: Exception added to 3@104
IM-TA0006032: 7@401 made obsolete and 7@402 updated
IM-TA0006035: 7@610 made obsolete
IM-TA0006036: 5@113 extended
IM-TA0006037: 7@523 made obsolete

2.2 2009-04-28 13:41:00 Updated checked flag for several rules, which are now checked.

2.1 2009-04-16 11:56:07 Changed severity level range from 1-6 to 1-10 (same as C++ coding
standard). Adapted severity levels where possible to same level as
C++. Removed reference to "recommendation" in intro.

2.0
(Authorized)

2008-12-23 14:31:28 Authorized by CCB Philips Healthcare

1.11 2008-11-25 16:02:19 Changed recommendations to rules.

1.10 2008-11-25 13:33:39 IM-TA00004683: Extended 8@102 with other locations where we
don't expect an exception IM-TA00004383: Removed 1@102 and
changed all recommendations in rules IM-TA00004658: Removed
8@201. IM-TA00002912: Extended 10@401

1.9 2008-07-09 08:05:48 Minor fix in 3@101, which caused the PDF output to be incorrect.

1.8 2008-07-09 08:02:00 Made 4@110 and 3@502 obsolete (CR's IM-TA00004351 and
IM-TA00004350).

1.7 2008-06-12 14:02:47 Homepage: Textual changes.
3@102: IM-TA00003423, Moved abbreviation part to new rule
3@112.
3@109: Remove <code> from namespace. Doesn't make sense and
isn't used in the two group specific examples.
3@111: remove "name" add end of synopsis.
3@112: New rule for IM-TA00003423 and added dicom as an
example.
3@201: update Synopsis to have "enum" iso "Enum".
3@203: IM-TA00002463, changed "Enum" in "enum".
3@307: Textual Changes and removed "exception", which wasn't an
exception at all.
3@402: Textual Changes (reduced MR specifity).
3@504: Updated text to formalize it a bit more (better checkable).
3@504: IM-TA00003168, added exclusion for Partial classes.
3@505: Removed rule, now obsolete.
4@103: Removed reference to non-existent appendix.
5@105: Removed rule, now obsolete.
5@108: IM-TA00003519, adaptions for Shadowing.
6@103: IM-TA00002364 (Changed to same text as C++ Coding
Standard) and remove one exception to the rule (about switch
statements).
7@102: Updated text a bit to have 1 exception section with 2 bullets.
7@105: IM-TA00003204 (Added exceptions) and removed "dubious"
reasoning line. Its confusing.
7@303: Textual changes.
7@503: IM-TA00003381, made 7@503 obsolete and created new
rules: 7@520 till 7@532.
7@526: Added rule.
7@530/7@532: changed to use HTML gt and lt escape characters.
8@107: IM-TA00002462 and rephrased sentence.
8@110: removed exception about catching on system-level/thread

title 12/08/22

4

routine and added SystemException.
9@103: Textual changes and added "virtual" to OnClosed() method.
Updated first sentence text.
9@104: Added note for usage of generic EventHandler.
9@108: New rule for IM-TA00003116.
9@110: New rule IM-TA00002459.
10@203: Adapted text. Found usefullness of using this attribute.
Added example.
10@401: IM-TA00003380, added >= and <= to rule.

1.6 2008-04-25 14:19:35 Changed PMS into Philips Healthcare

1.5 2008-04-25 13:26:08 Fixed Philips logo on homepage

1.4 2007-08-26 23:22:50 First version in TIOBE's Coding Standard Database.

title 12/08/22

5

Introduction

Introduction

1.1. Objective

This Coding Standard requires certain practices for developing programs in the C# language. The objective of
this coding standard is to have a positive effect on

Avoidance of errors/bugs, especially the hard-to-find ones.•
Maintainability, by promoting some proven design principles.•

1.2. Scope

This standard pertains to the use of the C# language. With few exceptions, it does not discuss the use of the
.NET class libraries.

The standard is an extension to the Microsoft's Framework Design Guidelines ([Microsoft Framework]).

This standard does not include rules on naming conventions or how to layout code in general. It is
recommended to adopt a separate style guide for this.

1.3. Rationale

Reasons to have a coding standard and to comply with it are not given here, except the objectives listed in
section 1.1. In this section the origins of the rules are given and some explanation why these were chosen.

1.3.1. Sources of inspiration

Some general good practices, most of them concerning Object-Oriented programming, were copied from the
Philips Healthcare C++ Coding Standard ([C++ Coding Standard]). Another source from which rules have
been adopted is the Aviva C# coding guidelines ([Aviva]).

The numbering scheme and some of the structure have been copied from [C++ Coding Standard].

1.3.2. Contrast with C++

A considerable part of a coding standard for C or C++ could be condensed into a single rule, avoid undefined
behavior, and maybe shun implementation defined behavior. Officially C# does not exhibit any of these,
barring a few minor, well-defined exceptions. Most examples of undefined behavior in C++ will cause an
exception to be thrown in C#. Although this is an improvement on the "anything might happen" of C++, it is
highly undesirable for post-release software.

1.4. Applicability

This coding standard applies to all C# code that is part of Philips Healthcare software products or directly
supportive to these products. Third party software is constrained by this standard if this software is developed
specifically for Philips Healthcare.

1.5. Notational conventions

6

1.5.1. Rule

A rule should be broken only for compelling reasons where no reasonable alternative can be found. The
author of the violating code shall consult with at least one knowledgeable colleague and a (senior) designer to
review said necessity. A comment in the code explaining the reason for the violation is mandatory.

1.5.2. Checkable

Rules in this coding standard are marked checkable if automatic verification of compliance is enforced by
static analyzers.

1.5.3. Examples

Please note that the source code formatting in some examples has been chosen for compactness rather than
for demonstrating good practice. The use of a certain compact style in some of the examples is considered
suitable for tiny code fragments, but should not be emulated in 'real' code.

title 12/08/22

7

Comments
Rules

4@101 Each file shall contain a header block

4@105 All comments shall be written in English

4@106 Use XML tags for documenting types and members

4@111 Don't comment out code

Rule 4@101

Synopsis:Each file shall contain a header block
Language:C#
Level: 2
Category:Comments

Description

Each file should at least contain the word "Copyright" or "(c)", a reference to the name of the company and a
year.

Example:

/* Copyright (c) <year> Koninklijke Philips N.V.
* All rights are reserved. Reproduction or dissemination
* in whole or in part is prohibited without the prior written
* consent of the copyright holder.
*/

Rule 4@105

Synopsis:All comments shall be written in English
Language:C#
Level: 10
Category:Comments

Description

Justification: English is the most common language for programming.

Note that there is no restriction what kind of English is to be used (either UK or US), provided that it is used
in a consistent way.

Rule 4@106

Synopsis:Use XML tags for documenting types and members
Language:C#

8

Level: 9
Category:Comments

Description

All public and protected types, non-trivial methods, fields, events and delegates shall be documented using
XML tags. Using these tags will allow IntelliSense to provide useful details while using the types. Also,
automatic documentation generation tooling relies on these tags.

Section tags define the different sections within the type documentation.

SECTION
TAGS

DESCRIPTION LOCATION

<summary> Short description type or member

<remarks> Describes preconditions and other additional information.type or member

<param> Describes the parameters of a method method

<returns> Describes the return value of a method method

<exception> Lists the exceptions that a method or property can throwmethod, even or property

<value>
Describes the type of the data a property accepts and/or
returns

property

<example>
Contains examples (code or text) related to a member or a
type

type or member

<seealso> Adds an entry to the See Also section type or member

<overloads> Provides a summary for multiple overloads of a method
first method in a overload
list.

Inline tags can be used within the section tags.

INLINE TAGS DESCRIPTION

<see> Creates a hyperlink to another member or type

<paramref> Creates a checked reference to a parameter
Markup tags are used to apply special formatting to a part of a section.

MARKUP TAGS DESCRIPTION

<code> Changes the indentation policy for code examples

<c> Changes the font to a fixed-wide font (often used with the <code> tag)

<para> Creates a new paragraph

<list> Creates a bulleted list, numbered list, or a table

 Bold typeface

<i> Italics typeface
Exception:

In an inheritance hierarchy, do not repeat the documentation, but use the <see> tag to refer to the base class
or interface member.

Rule 4@111

Synopsis:Don't comment out code
Language:C#

title 12/08/22

9

Level: 3
Category:Comments

Description

Never check-in code that is commented-out, but instead use a work item tracking system to keep track of
some work to be done. Nobody knows what to do when they encounter a block of commented-out code. Was
it temporarily disabled for testing purposes? Was it copied as an example? Should I delete it?

title 12/08/22

10

General
Rules

2@105 Do not mix code from different providers in one file

2@107 Do not suppress compiler warnings in the code

Rule 2@105

Synopsis:Do not mix code from different providers in one file
Language:C#
Level: 6
Category:General

Description

In general, third party code will not comply with this coding standard, so do not put such code in the same
file as code written by Philips.

Also, avoid mixing code from different Philips departments in one file, e.g., do not mix MR code with PII
code. This coding standard does not specify layout rules, so code from both providers may look different.

Rule 2@107

Synopsis:Do not suppress compiler warnings in the code
Language:C#
Level: 4
Category:General

Description

Some compiler warnings indicate serious program flaws. Leaving these unresolved is likely to have an
impact on the reliability of the code. Therefore, suppressing compiler warnings is undesirable.

11

Naming
Rules

3@109 Name namespaces according to a well-defined pattern

3@204 Do not use letters that can be mistaken for digits, and vice versa

3@501 Name DLL assemblies after their containing namespace

3@504 Name the source file to the main class

Rule 3@109

Synopsis:Name namespaces according to a well-defined pattern
Language:C#
Level: 8
Category:Naming

Description

Namespaces should be written in Pascal casing and should start with the following pattern:

<company>.<businessunit>.<technology>.<top-level component>

An example is

Philips.MR.Cardio.IMM.Common.Logging

Rule 3@204

Synopsis:Do not use letters that can be mistaken for digits, and vice versa
Language:C#
Level: 7
Category:Naming

Description

To create obfuscated code, use very short, meaningless names formed from the letters O, o, l, I and the
digits 0 and 1. Anyone reading code like

bool b001 = (lo == l0) ? (I1 == 11) : (lOl != 101);

will wonder what this means.

Rule 3@501

Synopsis:Name DLL assemblies after their containing namespace
Language:C#
Level: 8

12

Category:Naming

Description

To allow storing assemblies in the Global Assembly Cache, their names must be unique. Therefore, use the
namespace name as a prefix of the name of the assembly. As an example, consider a group of classes
organized under the namespace Philips.PmsMR.Platform.OSInterface. In that case, the
assembly generated from those classes will be called
Philips.PmsMR.Platform.OSInterface.dll.

If multiple assemblies are built from the same namespace, it is allowed to append a unique postfix to the
namespace name.

Rule 3@504

Synopsis:Name the source file to the main class
Language:C#
Level: 7
Category:Naming

Description

An exception for this rule holds for partial classes. If a partial class is used, then the other files for this class
can be named as MainClass.PostFix.cs, whereby Postfix is a meaningful name which describes the
contents and not just MainClass.2.cs.

Example: MyForm.cs and MyForm.Designer.cs.

title 12/08/22

13

Object lifecycle
Rules

5@101 Declare and initialize variables close to where they are used

5@102 If possible, initialize variables at the point of declaration

5@106 Use a public static readonly field to define predefined object instances

5@107 Set a reference field to null to tell the garbage collector that the object is no longer needed

5@108 Do not re-declare a visible name in a nested scope

5@111 Avoid implementing a finalizer

5@113 Implement IDisposable if a class uses unmanaged resources, owns disposable objects or
subscribes to other objects

5@114 Do not access any reference type members in the finalizer

5@116 Always document when a member returns a copy of a reference type or array

5@117 Properties, methods and arguments representing strings or collections should never be null

5@118 A virtual method may only be called if an object is fully constructed

5@119 Return interfaces to unchangeable collections

5@121 Don't use "using" variables outside the scope of the "using" statement

Rule 5@101

Synopsis:Declare and initialize variables close to where they are used
Language:C#
Level: 7
Category:Object lifecycle

Rule 5@102

Synopsis: If possible, initialize variables at the point of declaration
Language:C#
Level: 7
Category:Object lifecycle

Description

Avoid the C style where all variables have to be defined at the beginning of a block, but rather define and
initialize each variable at the point where it is needed.

Rule 5@106

Synopsis:Use a public static readonly field to define predefined object instances
Language:C#
Level: 4
Category:Object lifecycle

14

Description

For example, consider a Color class/struct that expresses a certain color internally as red, green, and blue
components, and this class has a constructor taking a numeric value, then this class may expose several
predefined colors like this.

public struct Color
{
 public static readonly Color Red = new Color(0xFF0000);
 public static readonly Color Black = new Color(0x000000);
 public static readonly Color White = new Color(0xFFFFFF);

 public Color(int rgb)
 {
 // implementation
 }
}

Rule 5@107

Synopsis:Set a reference field to null to tell the garbage collector that the object is no longer needed
Language:C#
Level: 4
Category:Object lifecycle

Description

Setting reference fields to null may improve memory usage because the object involved will be
unreferenced from that point on, allowing the garbage collector (GC) to clean-up the object much earlier.
Please note that this rule does not have to be followed for a variable that is about to go out of scope.

Rule 5@108

Synopsis:Do not re-declare a visible name in a nested scope
Language:C#
Level: 2
Category:Object lifecycle

Description

Repeating a name that already occurs in an outer scope is seldom intended and may be surprising in
maintenance, although the behaviour is well-defined.

int foo = something;

if (whatever)
{
 double foo = 12.34;
 double anotherFoo = foo; // Violation.
}

title 12/08/22

15

Rule 5@111

Synopsis:Avoid implementing a finalizer
Language:C#
Level: 4
Category:Object lifecycle

Description

If a finalizer is required, adhere to [5@113].

The use of finalizers in C# is demoted since it introduces a severe performance penalty due to way the
garbage collector works. Note also that you cannot predict at which time the finalizer is called (in other
words, it is non-deterministic).

Notice that C# finalizers are not really destructors as in C++. They are just a C# compiler feature to represent
CLR Finalizers.

Rule 5@113

Synopsis: Implement IDisposable if a class uses unmanaged resources, owns disposable objects or
subscribes to other objects

Language:C#
Level: 2
Category:Object lifecycle

Description

A class should implement the IDisposable interface to dispose the managed and unmanaged resources
that it owns. A managed resource is a class that implements IDisposable, whereas an unmanaged
resource is for instance a System.IntPtr or other value identifying a resource created by unmanaged
code.

Implementing IDisposable to dispose resources is especially important for unmanaged resources,
because the garbage collector cannot release those resources automatically. Although the garbage collector
will eventually release managed resources automatically, it is good practice to dispose claimed resources in a
deterministic and eager manner by implementing the Dispose method appropriately.

When implementing the Dispose pattern you should follow certain rules. Some rules depend on whether the
class can be inherited from (i.e. it is not sealed) and whether the class holds only managed resources or also
holds unmanaged resources. The following cases can be distinguished:

Inheritable class holding managed and/or unmanaged resources•
Derived class holding managed and/or unmanaged resources•
Sealed class holding only managed resources•
Sealed class holding both managed and unmanaged resources•
Sealed class holding managed objects that need to be shared with unmanaged code•

The first case can be considered the general case. If possible, prefer to use the Sealed class holding only
managed resources because it results in the simplest code. The different cases will be explained next.

title 12/08/22

16

Inheritable class holding managed and/or unmanaged resources

Please adhere to the following rules:

Implement the method Dispose of the IDisposable interface in one of the following two ways,
depending on whether your resource fields are readonly or not:

In case of only non-readonly fields:

public void Dispose()
{
 Dispose(true);
 GC.SuppressFinalize(this);
}

♦

In case of at least one readonly field:

private bool isDisposed = false;

public void Dispose()
{
 if (!isDisposed)
 {
 Dispose(true);
 isDisposed = true;
 GC.SuppressFinalize(this);
 }
}

♦

•

Implement the method 'protected virtual void Dispose(bool disposing)', in
which the resources that this class owns are disposed, as follows:

protected virtual void Dispose(bool disposing)
{
 if (disposing)
 {
 // dispose managed resources
 }
 // dispose unmanaged resources
}

To dispose a managed resource, invoke its Dispose() method inside the 'if (disposing)'
guard, for unmanaged resources invoke its resource-specific dispose method outside of the guard.

The disposing parameter indicates whether the call is done from the Dispose method (true
value), which is called deterministically from user code, or from the finalizer (false value), which
is called non-deterministically by the garbage collector. The reason that the managed resources
should not be disposed when called by the finalizer (false path), is that the managed resources might
already have been destroyed by the garbage collector, as the destruction happens in a
non-deterministic order.

•

If the class holds any unmanaged resources, implement a finalizer (also known as a 'destructor') as
follows:

~MyDisposable()
{
 Dispose(false);
}

You should avoid creating a finalizer when there are only managed resources, as this complicates
garbage collection and causes a needless loss of performance.

•

The pattern prescribes that the Dispose method should be idempotent, such that it is callable
multiple times without throwing an exception. Furthermore, subsequent invocations of Dispose
should do nothing. In order to achieve this you have two options:

•

title 12/08/22

17

Use a private bool isDisposed = false field, that is set to true when the
Dispose method has been called, and do a check on this boolean inside the Dispose()
method.

1.

Set a resource field to null (or the default value of the type) after it is disposed, and check
for null before disposing. Checking for null and invoking Dispose() can be combined
into one line using the '?.' operator.

2.

The first option should be used when you want to use resource fields that are declared readonly.
The advantage of the second option is that the guard and dispose are in close proximity, which aids
maintainability, and setting a field to null helps the garbage collector to reclaim memory eagerly.
Add an attribute ExternalOwnership to fields holding resources that are not owned by this
class, to indicate that it is the responsibility of another class to dispose these resources. You should
define this attribute yourself. The containing namespace does not matter.

•

The following code snippet shows an example of an inheritable (non-sealed) class holding one
non-readonly managed resource (connection) and one unmanaged resource (handle):

public class MyDisposable : IDisposable
{
 [System.Runtime.InteropServices.DllImport("gdi32.dll")]
 public static extern bool DeleteObject(IntPtr hObject); // just an example 'PInvoke' call for releasing a Win32 resource

 private SqlConnection connection;
 private IntPtr handle;

 public void Dispose()
 {
 // Deterministic call to Dispose(bool)
 Dispose(true);

 // Prevent the finalizer from being called
 GC.SuppressFinalize(this);
 }

 protected virtual void Dispose(bool disposing)
 {
 if (disposing)
 {
 if (connection != null)
 {
 connection.Dispose();
 connection = null;
 }
 }

 if (handle != IntPtr.Zero)
 {
 DeleteObject(handle);
 handle = IntPtr.Zero;
 }
 }

 ~MyDisposable()
 {
 // Non-deterministic call to Dispose(bool)
 Dispose(false);
 }
}

The following code snippet shows an example of an inheritable (non-sealed) class holding one readonly
managed resource:

public class MyDisposable : IDisposable

title 12/08/22

18

{
 private readonly SqlConnection connection;
 private bool isDisposed = false;

 public MyDisposable(string connectionString)
 {
 connection = new SqlConnection(connectionString);
 }

 public void Dispose()
 {
 if (!isDisposed)
 {
 Dispose(true);
 isDisposed = true;
 }
 }

 protected virtual void Dispose(bool disposing)
 {
 if (disposing)
 {
 connection.Dispose();
 }
 }
}

Derived class holding managed and/or unmanaged resources

If a class derives from a class implementing IDisposable, the following rules should be followed:

Override the Dispose(bool) method of the base class. In this method you should:
Clean up the resources owned by the derived class itself♦
Invoke 'base.Dispose(disposing)'♦

•

The derived class should not implement IDisposable, nor implement a finalizer•

The following is an example implementation of a class deriving from the MyDisposable class:

public class MyDerivedDisposable : MyDisposable
{
 protected SqlConnection anotherConnection;

 protected override void Dispose(bool disposing)
 {
 if (disposing)
 {
 // Dispose or cleanup managed resources of this derived class only
 anotherConnection?.Dispose();
 anotherConnection = null;
 }
 base.Dispose(disposing);
 }
}

Sealed class holding only managed resources

If your class should not be inherited from, you can specify your class as sealed. This simplifies the Dispose
pattern considerably:

You do not need to implement a 'Dispose(bool)' method, but can dispose resources in the
'Dispose()' method directly

•

title 12/08/22

19

You do not need to implement a finalizer, and as a consequence there is no not need to call
'GC.SuppressFinalize(this)'

•

The following is an example implementation of a sealed class holding only managed resources:

public sealed class SealedManagedResource : IDisposable
{
 private IDisposable connection;

 public void Dispose()
 {
 if (connection != null)
 {
 connection.Dispose();
 connection = null;
 }
 }
}

Alternatively, when using a readonly field:

public sealed class SealedManagedReadonlyResource : IDisposable
{
 private readonly IDisposable resource;
 private bool isDisposed;

 public void Dispose()
 {
 if (!isDisposed)
 {
 resource.Dispose();
 isDisposed = true;
 }
 }
}

Sealed classes holding both managed and unmanaged resources

In the scenario where the class is sealed, but also holds unmanaged resources, the code is somewhat more
complex.

Example code for this scenario:

public sealed class MyDisposable : IDisposable
{
 [System.Runtime.InteropServices.DllImport("gdi32.dll")]
 public static extern bool DeleteObject(IntPtr hObject); // just an example 'PInvoke' call for releasing a Win32 resource

 private IDisposable connection;
 private IntPtr handle;

 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 private void Dispose(bool disposing)
 {
 if (disposing)
 {
 if (connection != null)
 {

title 12/08/22

20

 connection.Dispose();
 connection = null;
 }
 }

 if (handle != IntPtr.Zero)
 {
 DeleteObject(handle);
 handle = IntPtr.Zero;
 }
 }

 ~MyDisposable()
 {
 Dispose(false);
 }
}

Sealed class holding managed objects that need to be shared with unmanaged code

When you need to share a managed object with unmanaged code, you need to 'pin' the managed object so that
its location on the heap will not be changed by the garbage collector. The managed object will remain pinned
during the lifetime of the class implementing IDisposable.

Example code for this scenario:

public sealed class SealedManagedObjectForUnmanagedCode : IDisposable
{
 // The managed object can be any .NET type, including custom ones.
 private object managedObject;
 private GCHandle gcHandle;
 private IntPtr handle;

 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 ~SealedManagedObjectForUnmanagedCode()
 {
 Debug.Assert(!gcHandle.IsAllocated);
 Dispose(false);
 }

 // Method name just an example, can appear anywhere in the class.
 private void CreateResource()
 {
 gcHandle = GCHandle.Alloc(managedObject, GCHandleType.Pinned);
 handle = gcHandle.AddrOfPinnedObject();
 }

 private void Dispose(bool disposing)
 {
 if (gcHandle.IsAllocated)
 {
 gcHandle.Free();
 handle = IntPtr.Zero;
 }
 if (disposing)
 {
 // Cleanup managed resources
 }
 }
}

title 12/08/22

21

Rule 5@114

Synopsis:Do not access any reference type members in the finalizer
Language:C#
Level: 2
Category:Object lifecycle

Description

When the finalizer is called by the garbage collector, it is very possible that some or all of the objects
referenced by class members are already garbage collected, so dereferencing those objects may cause
exceptions to be thrown.

Only value type local variables can be accessed (since they live on the stack).

Rule 5@116

Synopsis:Always document when a member returns a copy of a reference type or array
Language:C#
Level: 5
Category:Object lifecycle

Description

By default, all members that need to return an internal object or an array of objects will return a reference to
that object or array. In some cases, it is safer to return a copy of an object or an array of objects. In such case,
always clearly document this in the specification.

Rule 5@117

Synopsis:Properties, methods and arguments representing strings or collections should never be null
Language:C#
Level: 4
Category:Object lifecycle

Description

With the introduction of LINQ in C# 3.0, it has become much simpler to write code that manipulates
collections and strings (lists, dictionaries, etc.). For this code to work well, and stay simple, it is important
that collections and strings are always defined, and not equal to null.

So, as a general rule for C#, we propose the following:

C# members (methods, properties) and arguments that return a collection (such as a list or a dictionary) or
string should never return null. Instead of returning null when there is nothing more useful to return, they
should always return the empty list, the empty dictionary, the empty string, etc. That way, the caller of such
members never has to check for null, and can simply work on the returned collections or strings - whether
they are empty or not.

title 12/08/22

22

Also, members should document this behavior, i.e., they should document that, indeed, they return an empty
collection or string instead of null if nothing more useful can be returned.

Rule 5@118

Synopsis:A virtual method may only be called if an object is fully constructed
Language:C#
Level: 4
Category:Object lifecycle

Description

Don't call virtual functions from constructor or finalizer. Only call these when the object is in a fully
constructed state.

Rule 5@119

Synopsis:Return interfaces to unchangeable collections
Language:C#
Level: 5
Category:Object lifecycle

Description

In general, you don't want callers to be able to change an internal collection, so don't return arrays, lists or
other collection classes directly. Instead, return an IEnumerable<T>, IReadOnlyCollection<T>,
IReadOnlyList<T> or IReadOnlyDictionary<T>.

So

 public IEnumerable<FooBar> GetRecentItems()

is preferred to

 public List<FooBar> GetRecentItems()

Immutable collections such as ImmutableArray<T>, ImmutableList<T> and ImmutableDictionary<TKey,
TValue> prevent modifications from the outside and are thus allowed.

Rule 5@121

Synopsis:Don't use "using" variables outside the scope of the "using" statement
Language:C#
Level: 1
Category:Object lifecycle

title 12/08/22

23

Description

The "using" statement is a convenient way to dispose objects. While using this C# feature, one should make
sure that the disposed object is not used outside the scope of the "using" statement.

For example:

 private SsisPackageTester CreateSsisPackageTester(string workbookFile)
 {
 using (SsisPackageTester tester = CreateSsisPackageTester(workbookFile))
 {
 tester.SetAssertionVisitors(DefaultAssertionVisitors);
 return tester;
 }
 }

In this example "tester" is referring to a non-existing object after the "return" statement. Returning a disposed
object in this way is an unintended programming error.

title 12/08/22

24

Control flow
Rules

6@101 Do not change a loop variable inside a for loop block

6@102 Update loop variables close to where the loop condition is specified

6@105 Ensure switch statements are exhaustive

6@109 Don't return a function at an unexpected location

6@112 Do not make explicit comparisons to true or false

6@115 Do not access a modified object more than once in an expression

6@119 Avoid locking on a public type

6@120 Avoid conditions with double negatives

6@121 Don't use parameters as temporary variables

6@191 Do not dereference null

6@201 The cyclomatic complexity of a method should not exceed its configured maximum.

Rule 6@101

Synopsis:Do not change a loop variable inside a for loop block
Language:C#
Level: 2
Category:Control flow

Description

Updating the loop variable within the loop body is generally considered confusing, even more so if the loop
variable is modified in more than one place. This rule also applies to foreach loops.

Rule 6@102

Synopsis:Update loop variables close to where the loop condition is specified
Language:C#
Level: 4
Category:Control flow

Description

This makes understanding the loop much easier.

Rule 6@105

Synopsis:Ensure switch statements are exhaustive
Language:C#
Level: 2
Category:Control flow

25

Description

When a switch statement is used on a variable of an enumeration type, all values of that enum should be
covered by the switch statement; either by explicitly listing all values, or by using a default label.

If no action is required for the default case, a comment such as 'no action' is recommended. If the default case
should be unreachable, an assertion to this effect is recommended.

Furthermore, if a default label is used, it should always be used on the last section. This ensures the
default label is easy to locate. This requirement applies to all switch switch statements, including those
that are used on variables of non-enum types.

Rule 6@109

Synopsis:Don't return a function at an unexpected location
Language:C#
Level: 9
Category:Control flow

Description

Minimize the number of returns in each routine. It's harder to understand a routine if, reading it at the bottom,
you're unaware of the possibility that it returned somewhere above.

Use a return when it enhances readability. In certain routines, once you know the answer, you want to return
it to the calling routine immediately. If the routine is defined in such a way that it doesn't require any cleanup,
not returning immediately means that you have to write more code.

Rule 6@112

Synopsis:Do not make explicit comparisons to true or false
Language:C#
Level: 9
Category:Control flow

Description

It is usually bad style to compare a bool-type expression to true or false.

Example:

while (condition == false) // wrong; bad style
while (condition != true) // also wrong
while (((condition == true) == true) == true) // where do you stop?
while (conditio) // OK

Exception:

Nullable booleans are allowed to be compared to true or false.

title 12/08/22

26

Rule 6@115

Synopsis:Do not access a modified object more than once in an expression
Language:C#
Level: 5
Category:Control flow

Description

The evaluation order of sub-expressions within an expression is defined in C#, in contrast to C or C++, but
such code is hard to understand.

Example:

v[i] = ++c; // right
v[i] = ++i; // wrong: is v[i] or v[++i] being assigned to?
i = i + 1; // right
i = ++i + 1; // wrong and useless; i += 2 would be clearer

Rule 6@119

Synopsis:Avoid locking on a public type
Language:C#
Level: 4
Category:Control flow

Description

In general, avoid locking on a public type, or instances beyond your code's control. The common constructs
"lock (this)", "lock (typeof (MyType))", and "lock ("myLock")" violate this guideline:

"lock (this)" is a problem if the instance can be accessed publicly.•
"lock (typeof (MyType))" is a problem if MyType is publicly accessible.•
"lock("myLock")" is a problem because any other code in the process using the same string, will
share the same lock.

•

Best practice is to define a private object to lock on, or a private static object variable to protect data common
to all instances.

Rule 6@120

Synopsis:Avoid conditions with double negatives
Language:C#
Level: 4
Category:Control flow

title 12/08/22

27

Description

Although a property like customer.HasNoOrders make sense, avoid using it in a negative condition
like this:

 bool hasOrders = !customer.HasNoOrders;

Double negatives are more difficult to grasp than simple expressions, and people tend to read over the double
negative easily.

Rule 6@121

Synopsis:Don't use parameters as temporary variables
Language:C#
Level: 5
Category:Control flow

Description

Never use a parameter as a convenient variable for storing temporary state. Even though the type of your
temporary variable may be the same, the name usually does not reflect the purpose of the temporary variable.

Rule 6@191

Synopsis:Do not dereference null
Language:C#
Level: 1
Category:Control flow

Description

All C# code using reference types that can be null must be 'secured' against inadvertent use of null
references as follows:

if (reference != null)
{
...
}

Rule 6@201

Synopsis:The cyclomatic complexity of a method should not exceed its configured maximum.
Language:C#
Level: 4
Category:Control flow

title 12/08/22

28

Description

'Cyclomatic complexity' is a software metric (measurement) that directly measures the number of linearly
independent paths through a program's source code.

For an often used testing strategy such as 'Basis Path Testing' (McCabe) the number of test cases will equal
the cyclomatic complexity. Many studies have found a strong positive correlation between the cyclomatic
complexity and the number of defects contained in a module.

As such a 'high' (i.e. bigger than configured max) cyclomatic complexity is an indication of potential defects
and/or testability problems.

title 12/08/22

29

Object oriented
Rules

7@101 Declare all fields (data members) private

7@102 Prevent instantiation of a class if it contains only static members

7@105 Explicitly define a protected constructor on an abstract base class

7@106 Make all types internal by default

7@107 Limit the contents of a source code file to one type

7@108 Use using statements instead of fully qualified type names

7@201 Selection statements (if-else and switch) should be used when the control flow depends on an
object's value; dynamic binding should be used when the control flow depends on the object's type

7@301 All variants of an overloaded method shall be used for the same purpose and have similar behavior

7@303 If you must provide the ability to override a method, make only the most complete overload virtual
and define the other operations in terms of it

7@403 It shall be possible to use a reference to an object of a derived class wherever a reference to that
object's base class object is used

7@404 Don't hide inherited members with the new keyword

7@501 Do not overload any 'modifying' operators on a class type

7@502 Do not modify the value of any of the operands in the implementation of an overloaded operator

7@503 If you implement one of operator==(), the Equals method or GetHashCode(), implement
all three

7@520 Override the GetHashCode method whenever you override the Equals method.

7@521 Override the Equals method whenever you implement the == operator, and make them do the
same thing

7@530 Implement operator overloading for the equality (==), not equal (!=), less than (<), and greater
than (>) operators when you implement IComparable

7@531 Overload the equality operator (==), when you overload the addition (+) operator and/or subtraction
(-) operator

7@532 Implement all relational operators (<, <=, >, >=) if you implement any

7@533 Do NOT use the Equals method to compare diffferent value types, but use the equality operators
instead.

7@601 Allow properties to be set in any order

7@602 Use a property rather than a method when the member is a logical data member

7@603 Use a method rather than a property when this is more appropriate

7@604 Do not create a constructor that does not yield a fully initialized object

7@608 Use pattern matching instead of the "as" keyword

7@609 Use the correct way of casting

7@611 Use generic constraints if applicable

7@700 Do not ignore method results

Rule 7@101

Synopsis:Declare all fields (data members) private
Language:C#
Level: 2

30

Category:Object oriented

Description

An honored principle, stated in both [C++ Coding Standard] and [MS Design].

Exceptions:

static readonly fields and const fields, which may have any accessibility deemed
appropriate. See also [5@106].

•

Classes that only contain fields and no methods/properties.•

Rule 7@102

Synopsis:Prevent instantiation of a class if it contains only static members
Language:C#
Level: 5
Category:Object oriented

Description

If a class only contains static members there is no use to instantiate it. The way to prevent instantation is to
mark the class as static.

Note that a static class can't be inherited from because there is no use for it (children are only accessible via
class names not via instances). So if you have a class with only static methods and it has children, then it is
recommended to make a utility class instead.

Rule 7@105

Synopsis:Explicitly define a protected constructor on an abstract base class
Language:C#
Level: 3
Category:Object oriented

Description

Of course an abstract class cannot be instantiated, so a public constructor should be harmless. However, [MS
Design] states:

Many compilers will insert a public or protected constructor if you do not. Therefore, for better
documentation and readability of your source code, you should explicitly define a protected constructor
on all abstract classes.

title 12/08/22

31

Rule 7@106

Synopsis:Make all types internal by default
Language:C#
Level: 4
Category:Object oriented

Description

To make a more conscious decision on which types to make available to other assemblies first restrict the
scope as much as possible. Then carefully decide what to expose as a public type.

Wrong example:

class BaseClass
{
 public static int intM = 0;
}

Correct example:

internal class BaseClass
{
 public static int intM = 0;
}

Rule 7@107

Synopsis:Limit the contents of a source code file to one type
Language:C#
Level: 4
Category:Object oriented

Description

Exception Nested types should, for obvious reasons, be part of the same file.

Rule 7@108

Synopsis:Use using statements instead of fully qualified type names
Language:C#
Level: 5
Category:Object oriented

Description

Limit the usage of fully qualified type names in order to prevent name clashing.

Wrong example:

 System.Collections.Generic.List<int> list = new System.Collections.Generic.List<int>();

title 12/08/22

32

Correct example:

 using System.Collections.Generic;
 List<int> list = new List<int>();

If you do need to prevent name clashing, use a using directive to assign an alias:

 using WebUILabel = System.Web.UI.WebControls.Label;

Rule 7@201

Synopsis:Selection statements (if-else and switch) should be used when the control flow depends on
an object's value; dynamic binding should be used when the control flow depends on the object's
type

Language:C#
Level: 9
Category:Object oriented

Description

This is a general OO principle. Please note that it is usually a design error to write a selection statement that
queries the type of an object (keywords typeof, is). Dynamic binding (e.g. using class inheritance) is a
much better choice then.

Exception:

Using a selection statement to determine if some object implements one or more optional interfaces is a valid
construct though.

Rule 7@301

Synopsis:All variants of an overloaded method shall be used for the same purpose and have similar
behavior

Language:C#
Level: 3
Category:Object oriented

Description

This is to prevent users to make false assumptions about the semantics of these methods.

Rule 7@303

Synopsis: If you must provide the ability to override a method, make only the most complete overload
virtual and define the other operations in terms of it

Language:C#
Level: 6

title 12/08/22

33

Category:Object oriented

Description

Using the pattern illustrated below requires a derived class to only override the virtual method. Since all the
other methods are implemented by calling the most complete overload, they will automatically use the new
implementation provided by the derived class.

public class MultipleOverrideDemo
{
 private string someText;

 public MultipleOverrideDemo(string s)
 {
 this.someText = s;
 }

 public int IndexOf(string s)
 {
 return IndexOf(s, 0);
 }

 public int IndexOf(string s, int startIndex)
 {
 return IndexOf(s, startIndex, someText.Length - startIndex);
 }

 // Use virtual for this one.
 public virtual int IndexOf(string s, int startIndex, int count)
 {
 return someText.IndexOf(s, startIndex, count);
 }
}

An even better approach, not required by this coding standard, is to refrain from making virtual methods
public, but to give them protected accessibility, changing the sample above into:

public class MultipleOverrideDemo
{
 // same as above ...
 public int IndexOf(string s, int startIndex, int count)
 {
 return InternalIndexOf(s, startIndex, count);
 }

 // Use virtual for this one.
 protected virtual int InternalIndexOf(string s, int startIndex, int count)
 {
 return someText.IndexOf(s, startIndex, count);
 }
}

Rule 7@403

Synopsis: It shall be possible to use a reference to an object of a derived class wherever a reference to that
object's base class object is used

Language:C#
Level: 3
Category:Object oriented

title 12/08/22

34

Description

This rule is known as the Liskov Substitution Principle, (see [Liskov 88]), often abbreviated to LSP. Please
note that an interface is also regarded as a base class in this context.

Rule 7@404

Synopsis:Don't hide inherited members with the new keyword
Language:C#
Level: 4
Category:Object oriented

Description

Not only does the new keyword break Polymorphism, one of the most essential object-orientation principles,
it also makes subclasses more difficult to understand. Consider the following two classes:

public class Book
{
 public virtual void Print()
 {
 Console.WriteLine("Printing Book");
 }
}

public class PocketBook : Book
{
 public new void Print()
 {
 Console.WriteLine("Printing PocketBook");
 }
}

This will cause behavior that you would not normally expect from class hierarchies:

 PocketBook pocketBook = new PocketBook();

 pocketBook.Print(); // Will output "Printing PocketBook "
 ((Book)pocketBook).Print(); // Will output "Printing Book"

It should not make a difference whether you call Print through a reference to the base class or through the
derived class.

So the correct version would be:

public class Book
{
 public virtual void Print()
 {
 Console.WriteLine("Printing Book");
 }
}

public class PocketBook : Book
{
 public override void Print()
 {
 Console.WriteLine("Printing PocketBook");

title 12/08/22

35

 }
}

Rule 7@501

Synopsis:Do not overload any 'modifying' operators on a class type
Language:C#
Level: 6
Category:Object oriented

Description

In this context the 'modifying' operators are those that have a corresponding assignment operator, i.e. the
non-unary versions of +, -, *, /, %, &, |, ^, << and >>.

There is very little literature regarding operator overloading in C#. Therefore it is wise to approach this
feature with some caution.

Overloading operators on a struct type is good practice, since it is a value type. The class is a reference
type and users will probably expect reference semantics, which are not provided by most operators.

Consider a class Foo with an overloaded operator+(int), and thus an impicitly overloaded
operator+=(int). If we define the function AddTwenty as follows:

public static void AddTwenty (Foo f)
{
 f += 20;
}

Then this function has no net effect:

{
 Foo bar = new Foo(5);
 AddTwenty (bar);
 // note that 'bar' is unchanged
 // the Foo object with value 25 is on its way to the GC...
}

The exception to this rule is a class type that has complete value semantics, like System.String.

Rule 7@502

Synopsis:Do not modify the value of any of the operands in the implementation of an overloaded operator
Language:C#
Level: 1
Category:Object oriented

Description

This rule can be found in a non-normative clause of [C# Lang], section 17.9.1. Breaking this rule gives
counter-intuitive results.

title 12/08/22

36

public static PatientList operator + (PatientList list, Patient p)
{
 list += p;
 return list;
}

Rule 7@503

Synopsis: If you implement one of operator==(), the Equals method or GetHashCode(),
implement all three

Language:C#
Level: 1
Category:Object oriented

Description

If your Equals method can throw an exception, this may cause problems if objects of that type are put into
a container. Do consider to return false for a null argument.

The msdn guidelines [MS Design] recommend to return false rather than throwing an exception when two
incomparable objects, say the proverbial apples and oranges, are compared. Since this approach sacrifices the
last remnants of type-safety, this recommendation has been weakened.

Exceptions:

In very rare cases it can be meaningful to override GetHashCode() without implementing the other two.

There is no need to implement the operator==() for reference types because a default implementation is
available.

Rule 7@520

Synopsis:Override the GetHashCode method whenever you override the Equals method.
Language:C#
Level: 1
Category:Object oriented

Description

You must guarantee that for two objects considered equal, according the Equals method, the
GetHashCode method returns the same value.

Rule 7@521

Synopsis:Override the Equals method whenever you implement the == operator, and make them do the
same thing

Language:C#
Level: 1
Category:Object oriented

title 12/08/22

37

Description

This allows infrastructure code such as Hashtable and ArrayList, which use the Equals method, to
behave the same way as user code written using the equality operator.

Note:

For value types, the other way around applies also, i.e., whenever you override the Equals method, then
also implement the equality operator.

Rule 7@530

Synopsis: Implement operator overloading for the equality (==), not equal (!=), less than (<), and greater
than (>) operators when you implement IComparable

Language:C#
Level: 3
Category:Object oriented

Rule 7@531

Synopsis:Overload the equality operator (==), when you overload the addition (+) operator and/or
subtraction (-) operator

Language:C#
Level: 2
Category:Object oriented

Rule 7@532

Synopsis: Implement all relational operators (<, <=, >, >=) if you implement any
Language:C#
Level: 2
Category:Object oriented

Rule 7@533

Synopsis:Do NOT use the Equals method to compare diffferent value types, but use the equality
operators instead.

Language:C#
Level: 3
Category:Object oriented

Description

An example, as given below, is the best way to explain this:

When the types used for Equals are different, the Equals method returns false regardless of the values:

int i = 0;

title 12/08/22

38

uint ui = 0;

if (i == ui)
{
 Console.WriteLine("i == ui: true");
}
else
{
 Console.WriteLine("i == ui: false");
}
if (i.Equals(ui))
{
 Console.WriteLine("i.Equals(ui): true");
}
else
{
 Console.WriteLine("i.Equals(ui): false");
}

This code ends with the following output:

i == ui: true
i.Equals(ui): false

Rule 7@601

Synopsis:Allow properties to be set in any order
Language:C#
Level: 4
Category:Object oriented

Description

Properties should be stateless with respect to other properties, i.e. there should not be an observable
difference between first setting property A and then B and its reverse.

Rule 7@602

Synopsis:Use a property rather than a method when the member is a logical data member
Language:C#
Level: 9
Category:Object oriented

Rule 7@603

Synopsis:Use a method rather than a property when this is more appropriate
Language:C#
Level: 9
Category:Object oriented

title 12/08/22

39

Description

In some cases a method is better than a property:

The operation is a conversion, such as Object.ToString.•
The operation is expensive enough that you want to communicate to the user that they should
consider caching the result.

•

Obtaining a property value using the get accessor would have an observable side effect.•
Calling the member twice in succession produces different results.•
The order of execution is important. See [7@601].•
The member is static but returns a value that can be changed.•
The member returns a copy of an internal array or other reference type.•
Only a set accessor would be supplied. Write-only properties tend to be confusing.•

Rule 7@604

Synopsis:Do not create a constructor that does not yield a fully initialized object
Language:C#
Level: 2
Category:Object oriented

Description

Only create constructors that construct objects that are fully initialized. There shall be no need to set
additional properties. A private constructor is exempt from this rule.

Rule 7@608

Synopsis:Use pattern matching instead of the "as" keyword
Language:C#
Level: 5
Category:Object oriented

Description

Since C# 7 it is possible to perform safe casting by only using the "is" operator. In previous days you had to
do something like this:

string text = input as string;
if(text != null)
{
 ...
}

It is more convenient to write this in the following way:

if(input is string text)
{
 ...
}

title 12/08/22

40

The pattern will not match if input is null and non-nullable types like int are supported as well.

Rule 7@609

Synopsis:Use the correct way of casting
Language:C#
Level: 7
Category:Object oriented

Description

If a type of an object is determined by design, then use explicit casting. If the type is unknown use the "as"
operator and check against null to see if casting succeeded (see [7@608]).

Avoid double casting by first checking the type with the "is" operator and then do the actual casting. This is
only possible for reference types.

Example:

ISomeInterface y = null;
if (x is ISomeInterface) // "is" operator uses a cast.
{
 y = (ISomeInterface)x; // Here is the second cast.
}

// Better way if by design we know the type.
ISomeInterface y = (ISomeInterface)x;

// Or if we do not know the type use "as"
ISomeInterface y = x as ISomeInterface;
if (y != null)
{
 // Use y.
}

Rule 7@611

Synopsis:Use generic constraints if applicable
Language:C#
Level: 5
Category:Object oriented

Description

Instead of casting to and from the object type in generic types or methods, use where constraints or the as
operator to specify the exact characteristics of the generic parameter.

Wrong example:

class MyClass<T>
{
 void SomeMethod(T t)
 {

title 12/08/22

41

 object temp = t;
 SomeClass obj = (SomeClass) temp;
 }
}

Correct example:

class MyClass<T> where T : SomeClass
{
 void SomeMethod(T t)
 {
 SomeClass obj = t;
 }
}

Rule 7@700

Synopsis:Do not ignore method results
Language:C#
Level: 4
Category:Object oriented

Description

There are several situations in which ignoring results is not desired:

A new object is created but never used. Unnecessary object creation and the associated garbage
collection of the unused object degrade performance.

•

A method that creates and returns a new string is called and the new string is never used. Strings are
immutable and methods such as String.ToUpper() returns a new instance of a string instead of
modifying the instance of the string in the calling method.

•

A COM or P/Invoke method that returns a HRESULT or error code that is never used. Ignoring
HRESULT or error code can lead to unexpected behavior in error conditions or to low-resource
conditions.

•

If the method result is never going to be used, then the design of the method is incorrect. In that case the
return type should be set to void instead.

title 12/08/22

42

Exceptions
Rules

8@102 Do not throw exceptions from unexpected locations

8@104 Document the exceptions that are explicitly thrown by a method or a property

8@105 Always log that an exception is thrown

8@107 Use standard exceptions

8@108 Throw informational exceptions

8@109 Throw the most specific exception possible

8@110 Do not silently ignore exceptions

8@111 Throw exceptions rather than returning some kind of status value

8@203 Avoid side-effects when throwing recoverable exceptions

Rule 8@102

Synopsis:Do not throw exceptions from unexpected locations
Language:C#
Level: 1
Category:Exceptions

Description

Throwing an exception from some locations are unexpected and can cause problems. For example when you
call an exception from inside a finalizer, the CLR will stop executing the finalizer, and pass the exception to
the base class finalizer (if any). If there is no base class, then the finalizer is discarded.

Do not throw exceptions from the following locations:

Location Note

Event accessor
methods

The followings exceptions are allowed: System.InvalidOperationException,
System.NotSupportedException and System.ArgumentException. This also includes
their derivates.

Equals methods
An Equals method should return true or false. Return false instead of an exception if
the arguments to not match.

GetHashCode()
methods

GetHashCode() should always return a value, otherwise you lose values in a hash table.

ToString methods
This method is also used by the debugger to display information about objects in a
string format. Therefore it should not raise an exception.

Static constructors A type becomes unusable if an exception is thrown from its static constructor.

Finalizers
(finalizers)

Throwing an exception from a finalizer can cause a process to crash.

Dispose methods
Dispose methods are often called in finally clauses as part of cleanup. Also
Dispose(false) is called from a finalizer, which in itself should not throw an exception
als.

Equality Operators
(==, !=)

Like the Equals methods, the operators should always return true or false.

43

Implicit cast
operators

A user is usually unaware that an implicit cast operators is called, therefore throwing
an exception from them is unexpected and should not be done.

Exception
constructor

Calling a exception constructor is done to throw an exception. If the constructor throws
an exception, then this is confusing.

Rule 8@104

Synopsis:Document the exceptions that are explicitly thrown by a method or a property
Language:C#
Level: 8
Category:Exceptions

Description

Describe the recoverable exceptions using the <exception> tag.

Explicit exceptions are the ones that a method or property explicitly throws from its implementation and
which users are allowed to catch. Exceptions thrown by .NET framework classes and methods used by this
implementation do not have to be listed here.

Example:

/// <exception cref="FileNotFoundException">Thrown when somepath isn't a real file.</exception>
public void MyMethod2()
{
 FileInfo fi = new FileInfo(somepath);
 if (!fi.Exists)
 {
 throw new FileNotFoundException("somepath doesn't exist");
 }
 ...
}

This rule is only mandatory for public and internal methods and properties, because the exceptions are in fact
part of the API and as such they need to be documented in the same way that everything else about public
and internal APIs needs to be documented.

Note also that private methods preferably should not throw exceptions in the first place, since exceptions
should be used to handle exceptional situations, and not as a control flow mechanism. There are more
graceful and cheaper ways for private methods to deal with this.

Rule 8@105

Synopsis:Always log that an exception is thrown
Language:C#
Level: 8
Category:Exceptions

Description

Logging ensures that if the caller catches your exception and discards it, traces of this exception can be
recovered at a later stage.

title 12/08/22

44

Rule 8@107

Synopsis:Use standard exceptions
Language:C#
Level: 3
Category:Exceptions

Description

The following list of exceptions are too generic and should not be raised directly by your code:

System.Exception•
System.ApplicationException•
Any exception which is reserved for use by the CLR only (check MSDN for this) The .NET
framework already provides a set of common exceptions. The table below summarizes the most
common exceptions that are available for applications.

•

EXCEPTION CONDITION

InvalidOperationException
An action is performed which is not valid considering the object's current
state.

NotSupportedException
An action is performed which is may be valid in the future, but is not
supported.

ArgumentException An incorrect argument is supplied.

ArgumentNullException
A null reference is supplied as a method's parameter that does not allow
null.

ArgumentOutOfRangeExceptionAn argument is not within the required range.

Rule 8@108

Synopsis:Throw informational exceptions
Language:C#
Level: 6
Category:Exceptions

Description

When you instantiate a new exception, set its Message property to a descriptive message that will help the
caller to diagnose the problem. For example, if an argument was incorrect, indicate which argument was the
cause of the problem. Also mention the name (if available) of the object involved.

Also, if you design a new exception class, note that it is possible to add custom properties that can provide
additional details to the caller.

Rule 8@109

Synopsis:Throw the most specific exception possible
Language:C#

title 12/08/22

45

Level: 6
Category:Exceptions

Description

Do not throw a generic exception if a more specific one is available (related to [8@108]).

Rule 8@110

Synopsis:Do not silently ignore exceptions
Language:C#
Level: 1
Category:Exceptions

Description

An empty catch block for all exceptions makes it really hard to find problems. The catch block should at least
contain one of the following items:

Use the exception argument (e.g. in tracing/logging).•
Re-throw the exception (either the same one or as inner exception for a more specific one). The
re-throw must be preceded by at least one other statement (logging, cleanup, etc).

•

Some other rules to obey:

A simple re-throw only is useless (and can degrade performance) and therefor forbidden.•
Avoid using "throw e;", since it changes the stack information. A new exception is started from
the point of this throw. Just use "throw;" or make a new exception with the caught exception as
inner exception.

•

Examples:

try
{
 ...
} catch (Exception) //

Rule 8@111

Synopsis:Throw exceptions rather than returning some kind of status value
Language:C#
Level: 4
Category:Exceptions

Description

A code base that uses return values for reporting the success or failure tends to have nested if-statements
sprinkled all over the code. Quite often, a caller forgets to check the return value anyhow. Structured
exception handling has been introduced to allow you to throw exceptions and catch or replace exceptions at a
higher layer. In most systems it is quite common to throw exceptions whenever an unexpected situations

title 12/08/22

46

occurs.

Wrong example:

static bool CopyObject(SampleClass original)
{
 if (original == null)
 {
 return false;
 }
}

Correct example:

static void CopyObject(SampleClass original)
{
 if (original == null)
 {
 throw new System.ArgumentException("Parameter cannot be null", "original");
 }
}

Rule 8@203

Synopsis:Avoid side-effects when throwing recoverable exceptions
Language:C#
Level: 1
Category:Exceptions

Description

When you throw a recoverable exception, make sure that the object involved stays in a usable and predictable
state. With usable it is meant that the caller can catch the exception, take any necessary actions, and continue
to use the object again. With predictable is meant that the caller can make logical assumptions on the state of
the object.

For instance, if during the process of adding a new item to a list, an exception is raised, then the caller may
safely assume that the item has not been added, and another attempt to re-add it is possible.

title 12/08/22

47

Delegates and events
Rules

9@101 Do not make assumptions on the object's state after raising an event

9@102 Always document from which thread an event handler is called

9@108 Use delegate inference instead of explicit delegate instantiation when possible

9@110 Each subscribe must have a corresponding unsubscribe

9@111 Use generic event handler instances

9@112 Prevent passing null values for sender/object to event handler (for instance-based events)

9@113 Always check an event handler delegate for null

9@114 Do not use return values of callbacks in events

Rule 9@101

Synopsis:Do not make assumptions on the object's state after raising an event
Language:C#
Level: 2
Category:Delegates and events

Description

Prepare for any changes to the current object's state while executing an event handler. The event handler may
have called other methods or properties that changed the object's state (e.g. it may have disposed objects
referenced through a field).

Typically raising an event should be the last statement in a method.

Rule 9@102

Synopsis:Always document from which thread an event handler is called
Language:C#
Level: 9
Category:Delegates and events

Description

Some classes create a dedicated thread or use the Thread Pool to perform some work, and then raise an event
when the work is done. The consequence of that is that an event handler is executed from another thread than
the main thread. For such an event, the event handler must synchronize (ensure thread-safety) access to
shared data (e.g. instance members).

Rule 9@108

Synopsis:Use delegate inference instead of explicit delegate instantiation when possible

48

Language:C#
Level: 9
Category:Delegates and events

Description

Using delegate inference for subscribing to and unsubscribing from event, code can be made much more
elegant than the old previous way, which was like:

 someClass.SomeEvent += new EventHandler(OnHandleSomeEvent);
 private void OnHandleSomeEvent(object sender, EventArgs e)
 {...}

This can now be replaced by:

 someClass.SomeEvent += OnHandleSomeEvent;
 private void OnHandleSomeEvent(object sender, EventArgs e)
 {...}
}

Note: this only applies to code written in C# 2.0 and higher.

Rule 9@110

Synopsis:Each subscribe must have a corresponding unsubscribe
Language:C#
Level: 2
Category:Delegates and events

Description

Subscribing to an event gives the object that sends the event, a reference to the subscribed object. If the
subscribed object does not unsubscribe once that is not needed, then it will still be called. If for example, the
subscribed object is disposed, then the event still is called on that disposed object (which usually is not
intended), and also it is not garbage collected. Therefore it is good to ensure that for each subscribe that is
done, also an unsubscribe is done, once listening to that event is no longer needed. The Dispose()
implementation could be used to ensuring that all unsubscribes are done.

Rule 9@111

Synopsis:Use generic event handler instances
Language:C#
Level: 5
Category:Delegates and events

Description

See http://msdn.microsoft.com/en-us/library/ms182178.aspx for a complete description and example of this
FxCop based rule (CA1003).

Before .NET Framework 2.0, in order to pass custom information to the event handler, a new delegate had to
be declared that specified a class that was derived from the System.EventArgs class.
This is no longer true in .NET Framework 2.0, which introduced the System.EventHandler(Of
TEventArgs) delegate.

title 12/08/22

49

This generic delegate allows any class that is derived from EventArgs to be used together with the event
handler.
A static generic EventHandler will supply a null sender object (there's no object instance !).
An instance EventHandler will supply the object instance that raises the event as sender.

Rule 9@112

Synopsis:Prevent passing null values for sender/object to event handler (for instance-based events)
Language:C#
Level: 4
Category:Delegates and events

Description

9@104 states "Use the sender/arguments signature for event handlers". This is very good, but if you use that,
there are some additional rules you should obey:

Do not pass null as the event sender parameter when raising a non-static event.
(Static events do NOT have an (object) instance and thus NO sender.

•

Do not pass null as the event data parameter when raising an event.
Use EventArgs.Empty when no relevant data can/should be sent with the event.

•

These two come from MSDN (see http://msdn.microsoft.com/en-us/library/ms229011.aspx).

Rule 9@113

Synopsis:Always check an event handler delegate for null
Language:C#
Level: 1
Category:Delegates and events

Description

An event that has no subscribers is null. So before invoking, always make sure that the delegate list
represented by the event variable is not null. Invoke using the null conditional operator, because it
additionally prevents conflicting changes to the delegate list from concurrent threads.

Wrong example:

 event EventHandler Notify;

 protected virtual void OnNotify(NotifyEventArgs args)
 {
 Notify.Invoke(this, args);
 }

Correct example:

 event EventHandler Notify;

 protected virtual void OnNotify(NotifyEventArgs args)
 {
 Notify?.Invoke(this, args);

title 12/08/22

50

 }

Tip You can prevent the delegate list from being empty altogether. Simply assign an empty delegate like this:

 event EventHandler Notify = delegate {};

Rule 9@114

Synopsis:Do not use return values of callbacks in events
Language:C#
Level: 2
Category:Delegates and events

Description

Events may have multiple subscribers, in which case their return value has no meaning. For this reason, you
should not use a delegate with a return type for events.

public delegate bool ThreePpsApplyCallback(XyzDouble p1, XyzDouble p2, XyzDouble p3);
public event ThreePpsApplyCallback ThreePpsApply; // not allowed
public ThreePpsApplyCallback ThreePpsApply; // allowed

title 12/08/22

51

Data types
Rules

10@203 Use the [Flags] attribute on an enum if a bitwise operation is to be performed on the numeric
values

10@301 Do not use 'magic numbers'

10@401 Floating point values shall not be compared using the == nor the != operators nor the Equals
method.

10@404 Only implement casts that operate on the complete object

10@405 Do not generate a semantically different value with a cast

10@406 When using composite formatting, do supply all objects referenced in the format string

10@407 When using composite formatting, do not supply any object unless it is referenced in the format
string

Rule 10@203

Synopsis:Use the [Flags] attribute on an enum if a bitwise operation is to be performed on the numeric
values

Language:C#
Level: 7
Category:Data types

Description

It is good practice to use the Flags attribute for documenting that the enumeration is intended for
combinations. Also using this attribute provides an implementation of the ToString method, which
displays the values in their original names instead of the values.

Example:

FileInfo file = new FileInfo(fileName);
file.Attributes = FileAttributes.Hidden | FileAttributes.ReadOnly;
Console.WriteLine("file.Attributes = {0}", file.Attributes.ToString());

The printed result will be ReadOnly|Hidden.

Use an enum with the flags attribute only if the value can be completely expressed as a set of bit flags. Do
not use an enum for open sets (such as the operating system version). Use a plural name for such an enum,
as stated in [3@203].

Example:

[Flags]
public enum AccessPrivileges
{
 Read = 0x1,
 Write = 0x2,
 Append = 0x4,
 Delete = 0x8,
 All = Read | Write | Append | Delete
}

52

Rule 10@301

Synopsis:Do not use 'magic numbers'
Language:C#
Level: 7
Category:Data types

Description

Do not use literal values, either numeric or strings, in your code other than to define symbolic constants. Use
the following pattern to define constants:

public class Whatever
{
 public static readonly Color PapayaWhip = new Color(0xFFEFD5);
 public const int MaxNumberOfWheels = 18;
}

Strings intended for logging or tracing are exempt from this rule.

Literals are allowed when their meaning is clear from the context, and not subject to future changes. For
instance, the values 0, 1 and 2 can be used safely. The same holds for mathematical angels 90, 180, 270
and 360, powers of 2 and powers of 10.

mean = (a + b) / 2; // okay
WaitMilliseconds(waitTimeInSeconds * 1000); // clear enough

If the value of one constant depends on the value of another, do attempt to make this explicit in the code, so
do not write

public class SomeSpecialContainer
{
 public const int MaxItems = 32;
 public const int HighWaterMark = 24; // at 75%
 ...
}

but rather do write

public class SomeSpecialContainer
{
 public const int MaxItems = 32;
 public const int HighWaterMark = 3 * MaxItems / 4; // at 75%
 ...
}

Please note that an enum can often be used for certain types of symbolic constants.

Rule 10@401

Synopsis:Floating point values shall not be compared using the == nor the != operators nor the Equals
method.

Language:C#

title 12/08/22

53

Level: 2
Category:Data types

Description

Most floating point values have no exact binary representation and have a limited precision, which can even
decrease by rounding errors, especially when intermediately using integral values. Thus comparing these
using == resp. != will often not lead to the desired results.

The way to solve this is to define an helper function that takes a range that determines whether two floating
point values are the same. E.g.

public static bool AlmostEquals(double double1, double double2, double precision)
{
 return (Math.Abs(double1 - double2) <= precision);
}
...
double d1;
double d2;
...
bool equals = AlmostEquals(d1, d2, 0.0000001);

It is important to understand that it is wrong to use a fixed constant to compare to because the value of this
constant depends on the expected values of the floating points. Big floats need a larger precision than small
floats. That's why comparing to constant Epsilon is not correct. Epsilon might be too small in some
cases to perform a correct comparison.

Exception to the rule When a floating point variable is explicitly initialized with a value such as 1.0 or 0.0,
and then checked for a change at a later stage.

Rule 10@404

Synopsis:Only implement casts that operate on the complete object
Language:C#
Level: 2
Category:Data types

Description

In other words, do not cast one type to another using a member of the source type. For example, a Button
class has a string property Name. It is valid to cast the Button to the Control (since Button is a
Control), but it is not valid to cast the Button to a string by returning the value of the Name property.

Rule 10@405

Synopsis:Do not generate a semantically different value with a cast
Language:C#
Level: 2
Category:Data types

title 12/08/22

54

Description

For example, it is appropriate to convert a Time or TimeSpan into an Int32. The Int32 still represents
the time or duration. It does not, however, make sense to convert a file name string such as
c:\mybitmap.gif into a Bitmap object.

Rule 10@406

Synopsis:When using composite formatting, do supply all objects referenced in the format string
Language:C#
Level: 1
Category:Data types

Description

Composite formatting, e.g. in String.Format, uses indexed placeholders that must correspond to elements in
the list of values. A runtime exception results if a parameter specifier designates an item outside the bounds
of the list of values, and we prefer not to have runtime exceptions.

Example:

Console.WriteLine("The value is {0} and not {1}", i);

where the {1} specifier designates a missing parameter.

Rule 10@407

Synopsis:When using composite formatting, do not supply any object unless it is referenced in the format
string

Language:C#
Level: 4
Category:Data types

Description

Composite formatting, e.g. in String.Format, uses indexed placeholders that must correspond to elements in
the list of values. It is not an error to supply objects in that list that are not referenced in the format string, but
it very likely a mistake.

Example:

Console.WriteLine("The value is {0} and not {0}", i, j);

where the second specifier was probably intended to be {1} to refer to j.

title 12/08/22

55

Coding style
Rules

11@407 Write unary, increment, decrement, function call, subscript, and access operators together with
their operands; insert spaces around all other operators

11@409 Use spaces instead of tabs

Rule 11@407

Synopsis:Write unary, increment, decrement, function call, subscript, and access operators together with
their operands; insert spaces around all other operators

Language:C#
Level: 10
Category:Coding style

Description

OPERATORS & OPERANDS

Operators are operations that are performed, operands are the arguments or expressions of these operations.

E.g. in "int i = (count + 1)":

there is an assignment operator '=', with operands 'i' and '(count + 1)'•
there is an Add operator '+', with operands 'count' and the literal '1'•

Depending on the amount of operands it works on, an operator is called:

unary -> works on a single operand, e.g. "-1", "++count", "!isClosed" and "sizeof(int)"•
binary -> works on two operands, e.g. "a - b", "(isOnLine && hasImages)" and "(a <= b)"•
ternary -> works on three operands, e.g. the conditional operator '?' as in"((hasImages) ?
firstImageIndex : NoImageIndex)"

•

Next to that an operator can be:

bitwise -> i.e. applies to the 'bit-pattern' of it's operand(s)•
comparison -> i.e. compares the operands•
logical -> i.e. performs a logical evaluation of it's operands and returns a boolean result (!, &&, ||•
mathematical -> i.e. perfoms a mathematical operation (++, --, +, -, /, *)•

CODING RULES

The following style rules apply for the operators in the table below and their operands:

It is not allowed to add spaces in between these operators and their operands.•
It is not allowed to separate a unary operator from its operand with a newline.•

Note: the latter rule does not apply to the binary versions of the '&', '*', '+' and '-' operators.

For all other operators (and their operands) these rules do NOT apply !

56

unary: & * + - ~ !

increment and decrement:-- ++

function call and subscript:() []

access: .

EXAMPLES

a = -- b; // wrong
a = --c; // right

a = -b - c; // right
a = (b1 + b2) +
 (c1 - c2) +
 d - e - f; // also fine: make it as readable as possible

Rule 11@409

Synopsis:Use spaces instead of tabs
Language:C#
Level: 9
Category:Coding style

Description

Different applications interpret tabs differently. Always use spaces instead of tabs. You should change the
settings in Visual Studio (or any other editor) for that.

title 12/08/22

57

Performance
Rules

12@101 Avoid boxing and unboxing of value types

12@102 Do not use ToLower/ToUpper for case insensitive string comparison

12@103 Consider using Any() to determine whether an IEnumerable is empty

12@104 Test for empty strings using string length or String.IsNullOrEmpty

12@105 Use the evaluation order of && (and operator) and || (or operator) to increase performance

12@106 Use List instead of ArrayList especially for value types

Rule 12@101

Synopsis:Avoid boxing and unboxing of value types
Language:C#
Level: 6
Category:Performance

Description

Boxing and unboxing of values types is an expensive operation and should be avoided.

Some ways to achieve this:

If there is only one type of object in the ArrayList, then replace it by the generic List version.
Besides the performance gain, the added bonus is type safety. Note: some other collection classes
also have generic versions. And when you write your own classes, consider making it a generic class
also.

•

When putting a value type into a string formatting, use method ToString() on the value type. E.g.
instead of writing String.Format("SomeValue = {0}", x); write
String.Format("SomeValue = {0}", x.ToString()).

•

Rule 12@102

Synopsis:Do not use ToLower/ToUpper for case insensitive string comparison
Language:C#
Level: 6
Category:Performance

Description

Do not write code like:

 if (x.ToLower() == y.ToLower()) { } // Compare two strings case insensitive

or

 Hashtable x = new Hashtable();
 if (x.ContainsKey(y.ToUpper()) { } // Compare Hasttable key case insensive.

58

Using "ToLower()" or "ToUpper()" create a new string which is not required, just use:

 if (String.Compare(x, y, true) == 0) { }

or

 Hashtable x = new Hashtable(CaseInsensitiveCompare.DefaultInvariant); // Use case insensive IEqualityComparer
 if (x.ContainsKey(y)) { }

Note: for .NET 1.1 and older use Hashtable constructor with IHashCodeProvider and IComparer.

Rule 12@103

Synopsis:Consider using Any() to determine whether an IEnumerable is empty
Language:C#
Level: 9
Category:Performance

Description

In many cases using Any() is more efficient than Count(). With Count() you risk that iterating over the
entire collection has a significant impact.

Rule 12@104

Synopsis:Test for empty strings using string length or String.IsNullOrEmpty
Language:C#
Level: 6
Category:Performance

Description

When targeting .NET Framework 2.0 or newer, use the IsNullOrEmpty method. Otherwise, use the
Length == comparison whenever possible.

Comparing strings using the String.Length property or the String.IsNullOrEmpty method is
significantly faster than using Equals. This is because Equals executes significantly more MSIL
instructions than either IsNullOrEmpty or the number of instructions executed to retrieve the Length
property value and compare it to zero./

You should be aware that Equals and Length == 0 behave differently for null strings. If you try to get
the value of the Length property on a null string, the common language runtime throws a
System.NullReferenceException. If you perform a comparison between a null string and the empty
string, the common language runtime does not throw an exception; the comparison returns false. Testing for
null does not significantly affect the relative performance of these two approaches.

Rule 12@105

Synopsis:Use the evaluation order of && (and operator) and || (or operator) to increase performance

title 12/08/22

59

Language:C#
Level: 7
Category:Performance

Description

C# evaluates && and || from left to right and not all arguments need to be evaluated (see below). Use this to
put expensive evaluation arguments, such as method calls with an expensive calculation, as the last argument
to be evaluated. Example &&: Consider: if (MethodA() && MethodB()) { "do something"; } => if MethodA
returns FALSE, MethodB is never called. Use MethodB for expensive evaluation arguments. Example ||:
Consider: if (MethodA() || MethodB()) { "do something"; } => if MethodA returns TRUE, MethodB is never
called. Use MethodB for expensive evaluation arguments.

Rule 12@106

Synopsis:Use List instead of ArrayList especially for value types
Language:C#
Level: 7
Category:Performance

Description

For value types, the List is up to 20x faster than the ArrayList. For type string, there is no difference. (This is
mainly caused by the fact that the ArrayList, which is a 'left over' from .NET 1.0, is boxing the values and the
List isn't.) To prevent potential performance problems in this area the recommendation is to ALWAYS use
List.

title 12/08/22

60

Literature
C# Lang
Title: C# Language Specification
Author: TC39/TG2/TG3
Year: 2001
Publisher: ecma
ISBN: ECMA-334
http://www.ecma-international.org/publications/standards/Ecma-334.htm

C++ Coding Standard
Title: Philips Healthcare C++ Coding Standard
Author: Philips Healthcare CCB Coding Standards
Year: 2008
Publisher: Philps Healthcare
http://tics/codingstandards/CPP/viewer

Liskov 88
Title: Data Abstraction and Hierarchy
Author: Barbara Liskov
Year: 1988
Publisher: SIGPLAN Notices, 23,5 (May, 1988)
http://portal.acm.org/citation.cfm?id=62141

Meyer 88
Title: Object Oriented Software Construction
Author: Betrand Meyer
Year: 1988
Publisher: Prentice Hall

MS Design
Title: Design Guidelines for Developing Class Libraries
Author: Microsoft, MSDN
http://msdn.microsoft.com/en-us/library/ms229042(VS.80).aspx

Aviva
Title: Aviva C# Coding Guidelines
Author: Dennis Doomen
Year: 2020
https://csharpcodingguidelines.com/

Daniel Crabtree
Title: Daniel Crabtree
https://www.danielcrabtree.com/

Microsoft Framework
Title: Framework Design Guidelines
Author: Krzysztof Cwalina, Brad Abrams
Year: 2005
Publisher: Addison-Wesley Professional
ISBN: 0321246756

MS Programming
Title: C# Programming Guide

61

Author: Microsoft Developer Network
Publisher: Microsoft
https://msdn.microsoft.com/en-us/library/66x5fx1b.aspx

StackOverflow
Title: StackOverflow.com
https://stackoverflow.com/

title 12/08/22

62

	Table of Contents
	Change History
	Introduction
	Introduction

	Comments
	Rule 4@101
	Rule 4@105
	Rule 4@106
	Rule 4@111

	General
	Rule 2@105
	Rule 2@107

	Naming
	Rule 3@109
	Rule 3@204
	Rule 3@501
	Rule 3@504

	Object lifecycle
	Rule 5@101
	Rule 5@102
	Rule 5@106
	Rule 5@107
	Rule 5@108
	Rule 5@111
	Rule 5@113
	Rule 5@114
	Rule 5@116
	Rule 5@117
	Rule 5@118
	Rule 5@119
	Rule 5@121

	Control flow
	Rule 6@101
	Rule 6@102
	Rule 6@105
	Rule 6@109
	Rule 6@112
	Rule 6@115
	Rule 6@119
	Rule 6@120
	Rule 6@121
	Rule 6@191
	Rule 6@201

	Object oriented
	Rule 7@101
	Rule 7@102
	Rule 7@105
	Rule 7@106
	Rule 7@107
	Rule 7@108
	Rule 7@201
	Rule 7@301
	Rule 7@303
	Rule 7@403
	Rule 7@404
	Rule 7@501
	Rule 7@502
	Rule 7@503
	Rule 7@520
	Rule 7@521
	Rule 7@530
	Rule 7@531
	Rule 7@532
	Rule 7@533
	Rule 7@601
	Rule 7@602
	Rule 7@603
	Rule 7@604
	Rule 7@608
	Rule 7@609
	Rule 7@611
	Rule 7@700

	Exceptions
	Rule 8@102
	Rule 8@104
	Rule 8@105
	Rule 8@107
	Rule 8@108
	Rule 8@109
	Rule 8@110
	Rule 8@111
	Rule 8@203

	Delegates and events
	Rule 9@101
	Rule 9@102
	Rule 9@108
	Rule 9@110
	Rule 9@111
	Rule 9@112
	Rule 9@113
	Rule 9@114

	Data types
	Rule 10@203
	Rule 10@301
	Rule 10@401
	Rule 10@404
	Rule 10@405
	Rule 10@406
	Rule 10@407

	Coding style
	Rule 11@407
	Rule 11@409

	Performance
	Rule 12@101
	Rule 12@102
	Rule 12@103
	Rule 12@104
	Rule 12@105
	Rule 12@106

	Literature

